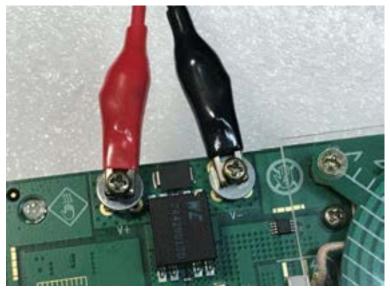
# **Wireless Power Reference Design**

# **User Guide**

Part Number: EVB-WP300TX14 & EVB-WP300RX14

Rev #200304 August 11, 2020


Note!

Input voltage set in advance of wireless charging launch end is 24V, the input voltage higher than 37V will damage the circuit board.

Power supply connecting please use thick wire line and Y-type terminal lock connecting circuit board



use simple fixture connect power supply, operating can't stabilize working when output big current





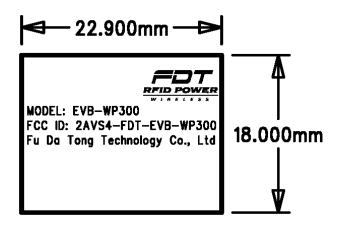
## FCC Information ID 2AVS4-FDT-EVB-WP300

#### https://fcc.report/FCC-ID/2AVS4-FDT-EVB-WP300

#### **Federal Communication Commission Interference Statement**

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.


FCC Caution: Any changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate this equipment.

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

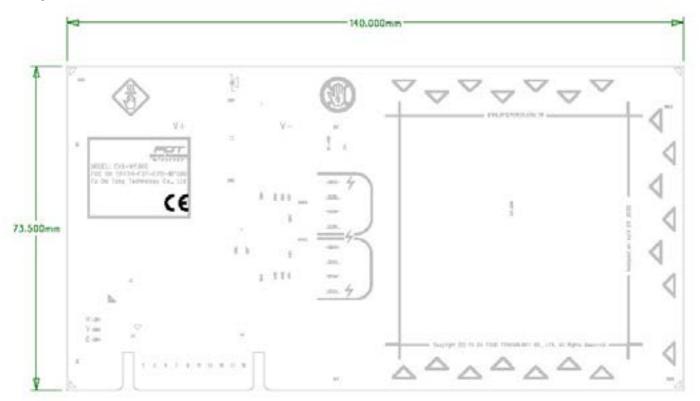
This device and its antenna(s) must not be co-located or operating in conjunction with any other antenna or transmitter.

#### Federal Communication Commission (FCC) Radiation Exposure Statement

This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. End user must follow the specific operating instructions for satisfying RF exposure compliance.



## **CE Information**


This equipment should be installed and operated with minimum distance 10cm between the radiator & your body.

Compliance with 2014/53/EU Radio Equipment Directive (RED)

In accordance with Article 10.8(a) and 10.8(b) of the RED, the following table provides information on the frequency bands used and the maximum RF transmit power of the product for sale in the EU:

| Frequency range (MHz) | Max. Transmit Power (dBuA/m) |
|-----------------------|------------------------------|
| 0.110 - 0.140         | 3.55                         |

#### The position of the CE mark on the transmission circuit board



RFID POWER

**FuDaTong Technology** 

Mo

## EU Declaration of Conformity

| Name of manufacturer: | Fu Da Tong Technology Co., Ltd                                               |
|-----------------------|------------------------------------------------------------------------------|
| Address:              | 10F5, No.880, Zhongzheng Rd., Zhonghe Dist., New Taipei City, Taiwan, R.O.C. |
| Telephone number:     | 886-2-32344442                                                               |

hereby, declare under our sole responsibility that the requirements set out in the Directive 2014/53/EU has been fully fulfilled on our product with indication below:

Product Name: Wireless Power Reference Design Model Number: EVB-WP300 Serial Number: NA

Object of the declaration

The object of the declaration described above is in conformity with the relevant Union harmonization legislation:

Radio Equipment Directive (RED) 2014/53/EU

Restriction of Hazardous Substances Directive (RoHS) 2011/65/EU

Waste Electrical and Electronic Equipment Directive (WEEE) 2012/19/EU

The following standards and technical specifications have been applied:

Article 3.2 & 3.3 : EN 303 417 V1.1.1

Article 3.1(b) : EN 301 489-1 V2.1.0 / EN 301 489-3 V2.1.1

Article 3.1(a)

/ EN 55024:2010/A1:2015 / EN 61000-3-2:2014 / EN 61000-3-3:2013

: EN 62311: 2008 / EN 50665:2017

: EN 60950-1: 2006+A11:2009+A1:2010+A12:2011+A2:2013 Article 3.1(a)

1177

: evb@rfidpower.com.tw

Notified Body (where applicable): (http://ec.europa.eu/growth/tools-databases/nando/index.cfm?fuseaction=notifiedbody.main)

Timco Engineering, Inc.

EU-type examination certificate: 200188 with Module B+C

Signed for and on behalf of:

Name, Function(Title)

Signature

Isai Ming Chiu

: Tsai; Ming-Chiu, General Manager

E-mail

/ EN 55032:2015/AC:2016(Class A)

August 11, 2020, Taiwan





## Fu Da Tong Technology Co., Ltd.

10F.-5, No.880, Zhongzheng Rd., Zhonghe Dist., New Taipei City 23586, TAIWAN Mali: EVB@rfidpower.com.tw http://www.rfidpower.com.tw



## HANDLE WITH CARE

Loading products over the maximum capacity may cause damage to the products.





# **Display introduce of setting board**

PAGE 1 - Power-on status display



Power-on succeeds

| Boot V+ 24.24V       | Power-on voltage display. The voltage needs to be<br>set in the rage and then it will continue to<br>operate.                                                                                                                                                                                            |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -8                   | Check the difference between value of coil resonance<br>oscillation frequency and recorded value<br>Complete equation is±0, will display +999~-999 when<br>it has deviation<br>If the difference bigger than set item 25 [Limit]L-C<br>ACC GAP then will be locked and can't finish the<br>start program |
| ResonantFreq 85.8KHz | Resonant frequency composed of TX and capacitors detected during power-on                                                                                                                                                                                                                                |
| P.O.S.T→OK           | Power . On . Self . Test pass                                                                                                                                                                                                                                                                            |
| FuDaTong A6          | Product name                                                                                                                                                                                                                                                                                             |
| #200304              | Software version number YYMMDD                                                                                                                                                                                                                                                                           |

## Pow SelfTest Failure V+ 5.01V Vin is too LOW Standard Vin =24.00V

#### supply voltage is too low

| Pow SelfTest Failure | Power-on self-test failure |
|----------------------|----------------------------|
| V+ 5.01V             | Detected voltage           |
| Vin is too LOW       | Input Voltage is too low   |
| Standard Vin =24.00V | Recommending voltage using |



Supply voltage is too high

| 11 2 0               |                            |
|----------------------|----------------------------|
| V+ 25.66V            | Detected voltage           |
| Vin is too HI        | Input voltage is too high  |
| Standard Vin =24.00V | Recommending voltage using |



#### Part fault

| MOSFET FAULT   | Drive element fault                              |
|----------------|--------------------------------------------------|
| U4x 0.00       | Fault in P/N U4 , the detected output voltage is |
|                | 0.00V                                            |
| [12]x          | Pin12 Judging fault of IC corresponding port     |
| U5 4.92        | Part Number U5 is normal, the detected output    |
|                | voltage is 4.92V                                 |
| [13] [14] [15] | No fault detected in Pin13, 14, and 15 of IC     |
|                | corresponding port                               |



#### Part fault

| U4 4.95        | Part Number U4 is normal, the detected output        |
|----------------|------------------------------------------------------|
|                | voltage is 4.95V                                     |
| [13]x          | Pin13 Judging fault of IC corresponding port         |
| U5x 0.00       | Fault in part number U5, the detected output voltage |
|                | is 0.00V                                             |
| [12] [14] [15] | No fault detected in Pin 12, 14, and 15 of IC        |
|                | corresponding port                                   |

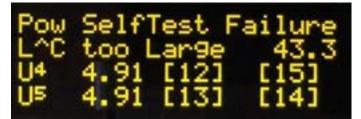


#### Part fault

| U4 4.95        | Part Number U4 is normal, the detected output        |
|----------------|------------------------------------------------------|
|                | voltage is 4.95V                                     |
| [14]x          | Judging fault in Pin14 of IC corresponding port      |
| U5x 0.00       | Fault in Part Number U5, the detected output voltage |
|                | is 0.00V                                             |
| [12] [13] [15] | No fault detected in Pin12, 13, and 15 of IC         |
|                | corresponding port                                   |



#### Part fault


| U4 4.95        | The Part Number U4 is normal, the detective output |
|----------------|----------------------------------------------------|
|                | voltage is 4.95V                                   |
| [15]x          | Judging fault in Pin15 of IC corresponding port    |
| U5 4.95        | Part number U5 is normal, the detected output      |
|                | voltage is 4.95V                                   |
| [12] [13] [14] | No fault detected in Pin12, 13, and 14 of IC       |
|                | corresponding port                                 |

## Pow SelfTest Failure COIL FAULT U4 4.95 [12] [15] U5 4.95 [13] [14]

#### Part fault

| COIL FAULT | Coil fault                                         |
|------------|----------------------------------------------------|
|            | *Usually it is because of the loop open circuit of |
|            | the coil and the capacitance, or the fault of coil |
|            | voltage detective divider resistance               |
| U4 4.95    | Part number U4 is normal, the detected output      |

|                     | voltage is 4.95V                                 |
|---------------------|--------------------------------------------------|
| U5 4.95             | Part number U5 is normal, the detected output    |
|                     | voltage is 4.95V                                 |
| [12] [13] [14] [15] | No fault detected in Pin12, 13, 14, and 15 of IC |
|                     | corresponding port                               |



The coil and the capacitance is too large, which causes the resonant frequency becomes too low

| L^C too Large       | The inductance value of coil and the capacitance are |
|---------------------|------------------------------------------------------|
|                     | too large                                            |
| 43.3                | The measurement of resonant frequency is 43.3 KHz    |
| U4 4.91             | Part number U4 is normal, the detected output        |
|                     | voltage is 4.91V                                     |
| U5 4.91             | Part number U5 is normal, the detected output        |
|                     | voltage is 4.91V                                     |
| [12] [13] [14] [15] | No fault is detected in Pin12, 13, 14 and 15 of IC   |
|                     | corresponding port                                   |



The coil and the capacitance are too small, which caused the resonant frequency too high

| L^C too Small       | The coil inductance value and capacitance are too  |
|---------------------|----------------------------------------------------|
|                     | small                                              |
| 145.9               | The measurement of resonant frequency is 145.9KHz  |
| U4 24.19            | Part number U4 is normal, the detected output      |
|                     | voltage is 24.19V                                  |
| U5 24.02            | The part number U5 is normal, the detected output  |
|                     | voltage is 24.02V                                  |
| [12] [13] [14] [15] | No fault is detected in Pin12, 13, 14, and 15of IC |
|                     | corresponding port                                 |

## PAGE 2 - Main operation status display



#### Standby surveillance mode

| +24。C   | The detected temperature, when there are more than<br>one temperature sensors, they will display the<br>highest temperature value among them and use the<br>highest temperature to judge if to launch the excess<br>temperature protection action |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LCsacn  | LC infers to the resonant TANK constituted by the<br>coil and the capacitance, the mode is to scan such<br>resonant frequency and use the gained value to judge<br>if it is necessary to enter into the power supply<br>action                    |
| 74.3KHz | The current detected resonant frequency is 74.3KHz                                                                                                                                                                                                |
| 24.02V  | The current input voltage is 24.02 V                                                                                                                                                                                                              |
| 0.01A   | The current input electricity is 0.01A                                                                                                                                                                                                            |
| 0.2W    | The current input power is 0.2W                                                                                                                                                                                                                   |
| 72.0/Hi | Set the upper resonant frequency limit of the RX launching electricity transmission                                                                                                                                                               |
| 66.4/Lo | Set the lower resonant frequency of the RX launching<br>electricity transmission<br>The measurement of resonant frequency need to be<br>between the upper and the lower limit, will it be<br>launched to transmit the electricity                 |
| Search. | Searching if there is RX approaching                                                                                                                                                                                                              |
| t       | Already launched the control of thrust system<br>*press C in the screen will switch to drive mode<br>t is the thrust control mode (thrust control on)<br>F is the full-thrust mode (thrust control off)                                           |



| Ν | Already launched the NFC device detection protection |
|---|------------------------------------------------------|
|   | function                                             |
|   | Under the situation that operating temperature       |
|   | changes or foreign matter on the coil when start     |
|   | machine, these will caused NFC detection can't       |
|   | running normally, and will close the NFC detection   |
|   | functional automatically, mark N not display         |
| n | If the original N mark changed to be lower-case n,   |
|   | represent the current running temperature different  |
|   | to recorded value, differentiate ability will        |
|   | falling down.                                        |
| @ | Calibrate mark , the module which already finished   |
|   | coil calibration display this symbol                 |
|   | The calibration program is writ the parameters of    |
|   | coil into ROM of A6 Only the module which finished   |
|   | calibration can start the NFC detection functional   |



| Standby detection mode | Metal foreign body detected                         |
|------------------------|-----------------------------------------------------|
| Metal-FOD              | Metal foreign body is detected on the main coil, no |
|                        | electricity transmission conducted before removing  |
|                        | the metal foreign body                              |



Standby detection modeNFC signal detectedFind <NFC>NFC signal reactor device is detected on the<br/>auxiliary coil, no electricity is conducted before<br/>the removal



| Standby detection mode | High frequency magnetic car is detected        |
|------------------------|------------------------------------------------|
| [RF COIL]              | The device of high frequency magnetic card is  |
|                        | detected on the auxiliary coil, no electricity |
|                        | transmission is conducted before the removal   |



| Standby detection mode | RX coil is approaching                           |
|------------------------|--------------------------------------------------|
| COIL MOVING            | According to the result of resonant frequency    |
|                        | scanning, judge that RX coil is approaching, the |
|                        | coil is still on moving, no power transmission   |
|                        | detection is launched yet                        |



Power transmission launching detection mode (thrust control on)

| 49.9⁄V    | The peak-to-peak value of the resonant on the coil |
|-----------|----------------------------------------------------|
| 105.1 KHz | The working frequency of U4 and U5 output drive    |

| Upwards arrow shows the measurement result of the   |
|-----------------------------------------------------|
| value compared to the last time is performing the   |
| uptrend                                             |
| Downwards arrow shows the measurement result of the |
| value compared to the last time is performing the   |
| downtrend                                           |



Power transmission launching detection mode (thrust control off)

|  | t-off | Thrust control off |  |
|--|-------|--------------------|--|
|--|-------|--------------------|--|



| Standby detection mode | RX coil is approaching                               |
|------------------------|------------------------------------------------------|
| COIL ERROR             | RX device is approaching, after launching the power  |
|                        | transmission detection the RX device has no          |
|                        | response, if the result happens again and again that |
|                        | the RX is approaching, it might be the breakdown of  |
|                        | the RX circuit                                       |



| F0D→ | After RX is approaching and it starts to supply the |
|------|-----------------------------------------------------|
|      | power, turn on the detection status of the metal    |
|      | foreign body detection function                     |
|      | There are four type of thickness, the thicker shows |
|      | the higher possibility of metal foreign body        |
|      | If the sign is "?", it shows invalid of the current |
|      | detection                                           |

| t88        | Thrust control system, thrust docrement              |
|------------|------------------------------------------------------|
|            | Thrust control system; thrust decrement              |
|            | 99 is the lowest thrust, it shows the output         |
|            | waveform phase differentiates 90 degrees of U4 and   |
|            |                                                      |
|            | The smaller the number that shows the increase in    |
|            | thrust, the more the output waveform phase           |
|            | difference is approaching to 180 degree.             |
|            | When the biggest thrust output is 0, it will display |
|            | FULL                                                 |
|            | Under the thrust control, it will adjust the thrust  |
|            | application amount p to 50 which is the smallest     |
|            | value, if the thrust use quantity p is relatively    |
|            | small, it will increase the thrust decrement         |
|            | After the increase of system electric power, thrust  |
|            | control system will automatically increase thrust    |
| p50        | when the coil input thrust application amount p is   |
|            | no-load, the output of the coil waveform and U4, U5  |
|            | is performing the same phase shift amount of phase   |
|            | position as 0 degree, the calculated thrust          |
|            | application amount is 0%                             |
|            | After the output power increases, the output of coil |
|            | waveform and U4, U5 will phase shift, when the       |
|            | largest phase shift is 90 degree, the calculated     |
|            | thrust application amount is 99%                     |
|            | The largest thrust used in the system is having      |
|            | relations with coil design, sensor distance, and     |
|            |                                                      |
|            | drive voltage. We suggest that no excess 80% in use, |
| 50         | so that the system can be relatively stabled.        |
| 56         | The nearest coil sensor distance of the delivery     |
|            | point and the receiving end is 99, and the farthest  |
|            | is 0, it is the value calculated by using the        |
|            | resonant frequency, when the distance is too far, it |
|            | will directly cut off the electric power             |
|            | transmission                                         |
| 99         | Continuous decoding success rate, the last 99 times  |
|            | of the decoding success rate, the largest is 99 and  |
|            | the smallest is 0, if the decoding success rate is   |
|            | lower than 10 it will cut off the electricity power  |
|            | transmission                                         |
| T∎ 32.0∕∕V | T is the antenna signal intensity, block means full, |
|            | and it shows the signal intensity is in a good       |
|            | status                                               |
|            | •                                                    |

| 313 The system calculates the RX voltage regulation<br>target value that is going to be set<br>The quantitative value is calculated according to<br>the system set value, which is used for<br>corresponding the sensor power supply system load<br>drive capability of the power supply and the |     | 32.0 means 32.0 volt in the direct voltage behind the RX port rectifier                                                                                                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| receiving end                                                                                                                                                                                                                                                                                    | 313 | The system calculates the RX voltage regulation<br>target value that is going to be set<br>The quantitative value is calculated according to<br>the system set value, which is used for<br>corresponding the sensor power supply system load<br>drive capability of the power supply and the |



Wireless power transmitting (thrust control off)

| t-off | Thrust control off                                   |
|-------|------------------------------------------------------|
| p07   | Under the thrust application amount 07, the drive is |
|       | the full-thrust output, so its thrust application    |
|       | amount will be relatively low                        |



Wireless power transmitting

| t61 | Driver thrust decrement is 61   |
|-----|---------------------------------|
| p49 | Thrust application amount is 49 |



| FULL  | The driver is on full-thrust output                  |
|-------|------------------------------------------------------|
| 2.25A | The system current is 2.25A, when the system current |
|       | increases, it will automatically complement the      |
|       | thrust, so the thrust application amount is lower    |
|       | than 50                                              |



#### Wireless power transmitting

|    | High thrust application amount marking               |
|----|------------------------------------------------------|
| 83 | Decoding success rate is 83%, because of the dynamic |
|    | load or other interference factors, the decoding     |
|    | success rate will decrease                           |



#### Wireless power transmitting

| Τ4 | Signal intensity 4, because of the dynamic load or  |
|----|-----------------------------------------------------|
|    | other interference factors, the coding signal from  |
|    | RX will have changes between strong and weak, block |
|    | means the signal is the strongest, the smaller the  |
|    | number shows the worse the signal                   |



| #4 | The voltage value is breakaway from the scope count |
|----|-----------------------------------------------------|
|    | when receiving RX data, display 4 means it has      |
|    | already received 4 times of abnormal voltage data   |
|    | continuously, most of the reasons are dynamic load  |
|    | or other interference factors                       |
|    | If this situation occurs continuously, it means the |
|    | data decoding sensitivity is set as excessive       |
|    | sensible                                            |



#### Wireless power transmitting

| Тх      | No data signal from RX has been received             |
|---------|------------------------------------------------------|
| 19/ 200 | Under the condition of RX breaking signals, as long  |
|         | as the RX measuring coil position does not move, it  |
|         | will not immediately cut off electric the power      |
|         | transmission and it will enter into timing process,  |
|         | after time's up, if there is still no signal         |
|         | recovered then it will cut off the electric power.   |
|         | 19/200 means timing to 200 will cut off the electric |
|         | power, and the current time counting is 19. At this  |
|         | moment the timer will increases 20 values in every   |
|         | second, and 200 is the time length of 10 seconds.    |



#### The end of wireless power transmission

| RxEND27.6 V | After ending the electric power transmission, the |
|-------------|---------------------------------------------------|
|             | last receiving RX port voltage data is 27.6V      |



| +41。 C | Detected temperature                                |
|--------|-----------------------------------------------------|
|        | *the sample limits the temperature to be 40 degree  |
| 0T!2   | Caution of over high temperature, time for the 2    |
|        | second, when the time of the over high temperature  |
|        | reaches 10 seconds it will be locked for protection |



| +41。C                 | Detected temperature                                 |
|-----------------------|------------------------------------------------------|
|                       | *in this sample, the temperature limitation is 40    |
|                       | degree                                               |
| [OTP] LOCK            | Due to the over high temperature, it has entered     |
|                       | into lock status, and will not conduct the action of |
|                       | electric power transmission                          |
| Below 38° C to unlock | The system design is that it need to be 2 degrees    |
|                       | lower than the limited temperature can it be         |
|                       | unlocked protection                                  |

## PAGE 3 - System limit value display



## Limit value display list

| Tx Limit | Tx indicates the power supply port, the content of<br>this page is the limit value of power supply's input |
|----------|------------------------------------------------------------------------------------------------------------|
|          | power                                                                                                      |
| 23.91 V  | The current measured input voltage is 23.91V                                                               |
| 9.01 A   | The current measured input current is 9.01A                                                                |
| 215.4 W  | The input power calculated from the measured voltage and the current is 215.4W                             |
| V ≥ 23.0 | Over low voltage protection limit value, if lower<br>than the value it will launch the UVP                 |
| V ≤ 25.0 | Over high voltage protection limit value, if higher than the value it will launch OVP                      |
| A ≤ 13.0 | Over high current protection limit value, if higher than the value it will launch the OCP                  |
| W ≤ 300  | Over high power protection limit value, if higher than the value it will launch the OPP                    |



#### UVP launching

| 22.37 V | The current measured input voltage is 22.37 volt    |
|---------|-----------------------------------------------------|
| UVP>7   | Lower than the limit value, 10 seconds after        |
|         | starting counting the time it will launch UVP       |
|         | protection, the current timing is at the 7 second   |
|         | This is under the condition of the measured voltage |
|         | is still close to the limit value, it will conduct  |
|         | counting second timing                              |
|         | If the gap is too large, it will launch             |
|         | automatically                                       |



#### OVP launched

| 25.66 V | The current measured input voltage is 25.66 volt   |
|---------|----------------------------------------------------|
| OVP←←   | Over high voltage protection OVP has been launched |



## OPP launching

| 304.9 V | The current measured input power is 304.9W           |
|---------|------------------------------------------------------|
| OPP>1   | Higher than the limit value, 10 seconds after timing |
|         | it will launch OPP protection, the current timing is |
|         | at the 1 second                                      |

PAGE 4 - Input power monitoring display



Input power monitoring

| Pow-IN Monitor | input power monitoring display                                                                                                   |
|----------------|----------------------------------------------------------------------------------------------------------------------------------|
| Idle 24.06 V   | The input power voltage under standby is 24.06V                                                                                  |
| Load 24.05 V   | The on-load voltage is 24.05V                                                                                                    |
| Loss 0.01 V    | The current measured wire loss amount                                                                                            |
| ▲ 0.00V        | The voltage change amount in the past 1 second, if<br>excess 1V it will conduct the voltage instability<br>protection            |
| @0.15A         | In the record, the largest occurred current value of voltage decreasing                                                          |
| →0.01V         | In the record, the largest voltage value occurred<br>the voltage decreasing<br>On this screen, press C to reset the record value |



#### Input power monitoring

| ▲ 0.01V | The voltage change amount in the past 1 second is |
|---------|---------------------------------------------------|
|         | 0.01V                                             |
| @11.36A | In the record, the largest current decreasing has |
|         | occurred under 11.36 ampere                       |
| →0.50V  | In the record, the largest occurred voltage       |
|         | decreasing amount is 0.50V                        |
|         | The value is the index of input current supply    |
|         | quality                                           |

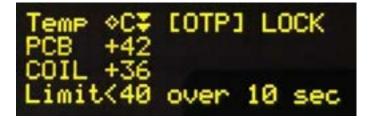


#### Input power monitoring

| @11.56A | In the record, the largest power decreasing has   |
|---------|---------------------------------------------------|
|         | occurred under 11.56 ampere                       |
| →0.23V  | In the record, the largest occurred voltage       |
|         | decreasing amount is 0.23V                        |
|         | Smaller than the 0.05V in the last sample, which  |
|         | shows the power supply quality is relatively good |

#### PAGE 5 - Temperature detection display




#### temperature monitoring

| Temp ₀ C▼ | Temperature monitor message                        |
|-----------|----------------------------------------------------|
| PCB +25   | The temperature sensor that installed in PCB, the  |
|           | temperature is 25 degree                           |
| COIL +23  | The temperature sensor that installed in COIL, the |
|           | temperature is 23 degree                           |
| Limit<70  | The system sets the upper temperature limit is 70  |
|           | degree, the value can be set in the setting mode   |
| •         | The higher temperature sensor in two temperature   |
|           | sensors select mark                                |
|           | The over heating protection is select the higher   |
|           | temperature sensor to do judgement.                |



#### Caution of over high temperature

| over 5 sec | The temperature of any sensor has over the upper |
|------------|--------------------------------------------------|
|            | limit and timed to the 5 <sup>th</sup> second    |



#### Over high temperature lock

| [OTP] LOCK  | Over high temperature lock status, electric power<br>transmission can be launched until wait after the<br>cooling |
|-------------|-------------------------------------------------------------------------------------------------------------------|
| over 10 sec | The temperature of any sensor has over the upper<br>limit and time to second 10                                   |

## PAGE 6 - Resonant frequency monitoring



#### Resonant frequency monitoring

| The first-time measured resonant frequency after     |
|------------------------------------------------------|
| powering on for the circuit board of the power       |
| supply port                                          |
| The latest measured resonant frequency, the unit is  |
| KHz                                                  |
| The period timer value in the internal IC of the     |
| latest measured resonant frequency                   |
| Under the system set wireless power transmission,    |
| the highest resonant frequency                       |
| Under the system set wireless power transmission,    |
| the lowest resonant frequency                        |
| The current measured resonant frequency              |
| Equal to the value of Lo, which shows that the coil  |
| between RX and TX is the closest, the calculated     |
| value is 99% , Equal to the value of Hi, which       |
| shows that the coil between RX and TX is the         |
| farthest, the calculated value is 0% , No wireless   |
| power transmission will be conducted over this scope |
| Driver output frequency                              |
|                                                      |

#### PAGE 7 - LED Status



#### LED display status

| LED < 1s | Symbol <, every block that it turn left means the   |
|----------|-----------------------------------------------------|
|          | time of 0.1 second                                  |
| 1R       | Code 1, red LED, when the closest block is cube,    |
|          | means lightening                                    |
| 2Y       | Code 2, yellow LED, when the closest block is cube, |
|          | means lightening                                    |
| 3G       | Code 3, green LED, when the closest block is cube,  |
|          | means lightening                                    |

#### PAGE 8 - Pin Level status



#### Button status

| [25]2A=H | The button 2A linked by Pin25 of IC port is currently a high potential           |
|----------|----------------------------------------------------------------------------------|
| [26]2B=H | The button 2B linked by Pin26 of IC port is currently a high potential           |
| [27]1A=H | The button 1A linked by Pin27 of IC port is currently a high potential           |
| [28]1B=H | The button 1B linked by Pin28 of IC port is currently a high potential           |
| [31]1C=H | The button 1C linked by Pin31 of IC port is currently a high potential           |
| [20]BZ=L | The buzzer drive switch linked by Pin 20 of IC port is currently a low potential |

PAGE 9 - Error Code Notice



Normal operation

NO ERROR

No error ; Normally operating



#### Error Occurrence

| ERROR-1021          | Error code 1021                      |
|---------------------|--------------------------------------|
| V+ Input too Small  | The input voltage is too small       |
| After 3s5 Restartrd | Countdown, restart after 3.5 seconds |



#### Error occurrence

| ERROR-1051         | Error code 1051            |
|--------------------|----------------------------|
| [TX-OPP] OVERPOWER | Over high power protection |




#### Error occurrence

| ERROR-2410        | Error code 2410                                 |
|-------------------|-------------------------------------------------|
| V+ Input Unstable | TX current change amount in a short time is too |
|                   | large                                           |

Error code list

| ERROR-     |                                                      |
|------------|------------------------------------------------------|
| ERROR-1021 | Low voltage protection                               |
| ERROR-1031 | Over voltage protection                              |
| ERROR-1041 | Over current protection                              |
| ERROR-1051 | Over power protection                                |
| ERROR-2040 | [15] THDN-1 input abnormal, U4 over high temperature |
| ERROR-2050 | [14] THDN-2 input abnormal, U5 over high temperature |
| ERROR-2100 | coil voltage is too high                             |
| ERROR-2110 | coil voltage is too low                              |
| ERROR-2123 | [21] and [23] are occurring mismatching              |
| ERROR-2410 | TX current change amount in a short time is too      |
|            | large                                                |
| ERROR-3100 | Invalid waif, the coil voltage is too high           |
| ERROR-3110 | Invalid waif, the coil voltage is too low            |
| ERROR-4010 | Coil abnormal, open circuit                          |
| ERROR-4020 | Capacitance abnormal, open circuit                   |
| ERROR-4030 | The match between coil and capacitance is too large  |
| ERROR-4040 | The match between coil and capacitance is too small  |
| ERROR-4050 | U4 thrust output abnormal                            |
| ERROR-4060 | U5 thrust output abnormal                            |
| ERROR-4070 | [12] PWM1-H output abnormal                          |
| ERROR-4080 | [13] PWM1-L output abnormal                          |
| ERROR-4090 | [14] drive part temperature abnormal                 |
| ERROR-4100 | [15] drive part temperature abnormal                 |
| ERROR-4110 | Launching input power is too high                    |
| ERROR-4120 | Launching input power is too low                     |

PAGE A - (Foreign Object Detection) Metal foreign body detection status The detection in the electric power transmission




Not in the electric power transmission

| FOD RX Offline | If not in the electric power transmission, and under |
|----------------|------------------------------------------------------|
|                | the RX offline condition, this page will be leave    |
|                | unused with no action taken                          |



Electric power transmitting

| RX online, in the wireless power transmission, in    |
|------------------------------------------------------|
| the metal foreign body analysis                      |
| The current judged metal foreign body probability is |
| 0%, when the judging reaches to 99.9% it will cut    |
| off the electric power transmission                  |
| Metal foreign body judging signal intensity, one     |
| block means in safe status, four full blocks means   |
| there is metal foreign body                          |
| The larger the current metal foreign body measured   |
| value, the safer, there might not have the           |
| possibility of metal foreign body                    |
| In this page, it is the smallest value of the        |
| obtained metal foreign body measured value in the    |
| past Press C to reset, the value is used for         |
| observing that the minimum value that might be       |
| occurred in metal foreign body judging in system     |
| operation, it is used for assisting to set the       |
| critical value                                       |
| Judging the critical value, if the measured value is |
| lower than the value it will be judged having metal  |
| foreign body                                         |
| The gap between the measure value and the critical   |
| value 225-140=85                                     |
|                                                      |



#### Approximate to the differentiate criticality

| Т 🎆 🎆 | Differentiate block number is the observed resonant<br>period frequency after stopping driving, the more<br>times it stops the more accurate the can be<br>differentiation, but it will decrease the power<br>supply quality |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| +10   | Gap between the measure value and the critical value                                                                                                                                                                         |



#### Approximate to the differentiate criticality

| 11      | ,                                                    |
|---------|------------------------------------------------------|
| 1 2 3 4 | If the measured value is lower than the criticality, |
| Т 🖩 🖩 🖬 | it will use the longest time of pausing for          |
|         | observing the change amount of resonant period       |
| -1      | The gap between measure value and critical value,    |
|         | negative value means there is metal                  |
| 54.0%   | It has started to accumulate the differentiate       |
|         | value, the metal foreign body differentiation is     |
|         | using the method of seize accumulation to conduct    |
|         | the differentiation evidence of the last closing     |
|         | electric power transmission action                   |
|         | -                                                    |



Metal foreign body confirmed, close the electric power transmission

| METAL RATIO: 99.9%  | The metal foreign body differentiation accumulation |
|---------------------|-----------------------------------------------------|
|                     | device has reached to 99.9% of confirm              |
| STOP OUTPUT         | Stop the output drive signal                        |
| After 2s3 Restarted | Countdown timing, prepare for restart               |

PAGE B - (Foreign Object Detection) Metal foreign body detection status the detection before the electric power transmission



#### Wireless power transmitting

| FOD LC SCAN Stop | RX online. Wireless power transmitting, stop the    |
|------------------|-----------------------------------------------------|
|                  | method of LC scanning and conduct the metal foreign |
|                  | body detection                                      |



#### Before the Wireless power transmission

| •            |                                                     |
|--------------|-----------------------------------------------------|
| FOD SCAN GO  | Before the Wireless power transmission, conduct the |
|              | method of LC scanning and to conduct the metal      |
|              | foreign body detection                              |
| SETBASIC→065 | Differentiate the critical set basic value          |
| ADJLIMIT→098 | The system automatically adjusted differentiate     |
|              | critical value, if lower than the value it will     |
|              | target that there is metal foreign body therefore   |
|              | not to launch the wireless power transmission       |
| MEASURED→130 | Measurement reading value, the bigger the value is  |
|              | shows the lower the possibility of having metal     |
|              | foreign body                                        |
| 4            | Change volume during the LC scan frequency          |
| 3            | Change volume during the LC detect the descend      |
|              | length of FOD                                       |
| + 30         | Differentiate the gap from reading value to the     |
|              | critical value, the large the value is showing the  |
|              | lower possibility of having metal foreign body      |



## possessing metal foreign body

| <b>→056 -39</b> | If the measurement reading value is lower than the |
|-----------------|----------------------------------------------------|
|                 | limit value, it will be judged as possessing metal |
|                 | foreign body, and stop electric power transmission |



| 8    | The change volume of NFC detect the signal on coil   |
|------|------------------------------------------------------|
| 1160 | Up limit of NFC signal numerical value judge higher  |
|      | than this value then will enter into [RF COIL] lock  |
|      | status                                               |
| 1088 | The latest one NFC signal detected numerical value   |
| 1024 | Down limit of NFC signal numerical value judge lower |
|      | than this value then will enter into [RF COIL] lock  |
|      | status                                               |




## Possessing NFC signal

| 52 | The reading number is the quantity of NFC data |
|----|------------------------------------------------|
|    | signal, if larger than 20 it will be judged as |
|    | possessing NFC device                          |

## PAGE C - Paging of start status display



| Boot Status         | The start program detect displayed content         |
|---------------------|----------------------------------------------------|
| V+ 24.01V           | The input voltage which detected by start program  |
| RF 74.3             | The coil resonance oscillation frequency which     |
|                     | detected by start program                          |
| U4 24.48            | Part number U4 is normal, the detected output      |
|                     | voltage is 24.48V                                  |
| U5 24.55            | Part number U5 is normal, the detected output      |
|                     | voltage is 24.55V                                  |
| [12] [13] [14] [15] | No fault is detected in Pin12, 13, 14 and 15 of IC |
|                     | corresponding port                                 |



| /             | The temperature record value in the calibration     |
|---------------|-----------------------------------------------------|
|               | datumis the content without records                 |
| LC            | Coil resonance oscillation frequency recorded value |
| FOD           | Metal foreign matter recorded value                 |
| X             | NFC detection currently is close status             |
| NFC           | NFC detection datum recorded value                  |
| -             | No datum                                            |
| ROM           | Datum in A6 internal memorizer                      |
| NEW           | The latest detection datum                          |
| +24/+23       | Detected PCB temperature is +24° Detected coil      |
|               | temperature is +23°                                 |
| 3764          | The latest coil resonance oscillation frequency     |
|               | recorded value                                      |
| 128           | The latest metal foreign matter recorded value      |
| 1090          | The latest NFC detection datum detected value       |
| Push <c>-</c> | Currently not press down button C                   |



| Push <c>9</c> | Start counting 0~9 after press down button C do save |
|---------------|------------------------------------------------------|
|               | record value after counted to 9                      |



## PAGE 0 - Operation Counter



Timing after starting-up

| Run: | 0d00h01m25s7 | The time after starting-up will be eliminated in |
|------|--------------|--------------------------------------------------|
|      |              | restart                                          |



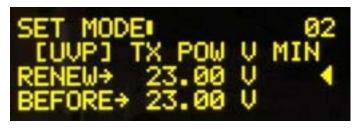
#### Timing after electric power transmission

| Rx: | 0d00h00m13s9 | The time after RX online will be eliminated after |
|-----|--------------|---------------------------------------------------|
|     |              | leaving the stop of electric power transmission   |

### SET MODE - Set Mode Menu

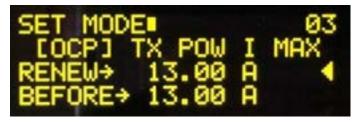
- Attention! The set mode has no function of error prevention, wrong settings will lead to the abnormal work of system or cause the damage in hardware
- After having the uncertain value amendment, please use the set of recover to the original setting to recover it to the optimization status




00

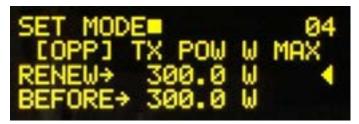
| SET MODE           | set mode                                            |
|--------------------|-----------------------------------------------------|
| #EVB-v57*          | The corresponding circuit board type of the current |
|                    | software setting                                    |
| WARNING! ADJ Value | Warning! Changing the set value might damage the    |
| May Damage Module, | circuit module, please cut the switch to operation  |
| Pls Switch to Run~ | for keeping running                                 |




01

| [OVP] TX POW V MAX | Set the largest input voltage of the supply power    |
|--------------------|------------------------------------------------------|
|                    | port module                                          |
| RENEW→             | Renewed value                                        |
| BEFORE→            | The setting value in the system currently            |
| •                  | Nonius, press C to switch to the adjusted value mode |




| 0 | 2 |
|---|---|
|   |   |

| [UVP] TX POW V MIN | Set the power supply port module smallest input |
|--------------------|-------------------------------------------------|
|                    | voltage                                         |



#### 

| [OCP] TX POW I MAX | Set the largest input current of power supply port |
|--------------------|----------------------------------------------------|
|                    | module                                             |



#### 

| [OPP] TX POW W MAX | Set the largest input power of power supply port |
|--------------------|--------------------------------------------------|
|                    | module                                           |



| [SET] Standard Vin | Displayed on the starting-up page to notice the user |
|--------------------|------------------------------------------------------|
|                    | about the suggesting use of voltage                  |



| 06           |                                         |
|--------------|-----------------------------------------|
| [Limit] Temp | Limit the highest operation temperature |



| [Limit] B3 RXV MAX | Limit the largest voltage value behind the rectifier |
|--------------------|------------------------------------------------------|
|                    | on the power receiving end RX                        |



### 

| [Limit] B3 RXV MIN | Limit the smallest voltage value behind the |
|--------------------|---------------------------------------------|
|                    | rectifier on the power receiving end RX     |



| [Ratio] CODE B3→RXV | The multiplying power switched from the value in the |
|---------------------|------------------------------------------------------|
|                     | data coding to the voltage on the B3                 |



| [Ratio] CODE B3→RXV | The multiplying power switched from the value in the |
|---------------------|------------------------------------------------------|
|                     | data coding to the voltage on the B3                 |



| [TIMER] B3 WAIT OFF | After losing the B3 data signal, it still need to |
|---------------------|---------------------------------------------------|
|                     | maintain the time of continue the wireless power  |
|                     | transmission                                      |



| [ADJ] Demod Keen | Decoding sensitivity, the smaller the number is the |
|------------------|-----------------------------------------------------|
|                  | more sensible it is                                 |



| [Limit] OUT PWM HI | The highest operation frequency that inputted to the |
|--------------------|------------------------------------------------------|
|                    | driver                                               |



| [Limit] OUT PWM LOW | The lowest operation frequency that inputted to the |
|---------------------|-----------------------------------------------------|
|                     | driver                                              |



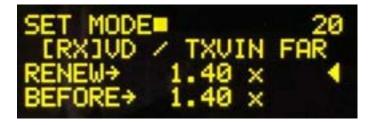
| [Limit] LC RES HI | Limit the operational highest LC resonant frequency |
|-------------------|-----------------------------------------------------|
|                   | value                                               |



## 

| [Limit] LC RES LOW | Limit the operational lowest LC resonant frequency |
|--------------------|----------------------------------------------------|
|                    | value                                              |




| [Rx ON] LC RES FAR | Set the RX launched farthest resonant frequency of |
|--------------------|----------------------------------------------------|
|                    | coil distance                                      |



| [Rx ON] LC RES NEAR | Set the RX launched nearest resonant frequency of |
|---------------------|---------------------------------------------------|
|                     | coil distance                                     |



| [BOOT ACC] LC RES | Set the launched detective coil resonant frequency |
|-------------------|----------------------------------------------------|
|                   | accuracy value                                     |



## 

| [RX] VD / TXVIN FAR | When the coil distance is the farthest, the RX set   |
|---------------------|------------------------------------------------------|
|                     | voltage is the multiplying power of TX input voltage |



# 

| [RX] VD / TXVIN NER | When the coil distance is the nearest, the RX set    |
|---------------------|------------------------------------------------------|
|                     | voltage is the multiplying power of TX input voltage |



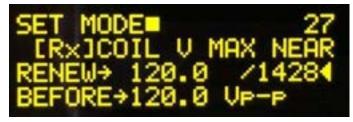
| [FOD] RX LINK LEVEL | Under the RX online, the critical value of the metal |
|---------------------|------------------------------------------------------|
|                     | foreign body differentiation                         |



| _    |                 |                                                     |
|------|-----------------|-----------------------------------------------------|
| [FOD | ] LC SCAN BASIC | Under the LC scanning mode, differentiate the basic |
|      |                 | value of metal foreign body                         |



#### 


| [ADJ]21 ADC → COILv | The ADC reading number obtained in the IC port 21  |
|---------------------|----------------------------------------------------|
|                     | switches to the multiplying power of coil peak-to- |
|                     | peak value.                                        |

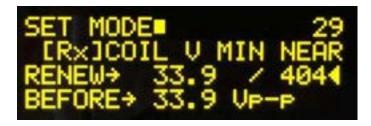


| [Limit]L-C ACC GAP | Under the condition that having the starting-up lock |
|--------------------|------------------------------------------------------|
|                    | L-C resonant frequency, the accepted differentiate   |
|                    | space, if the number is small then it can be         |
|                    | launched only when it is more accurate               |

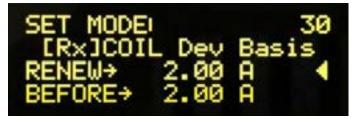


| [RX]COIL V MAX FAR | When the coil distance is the farthest, limit the |
|--------------------|---------------------------------------------------|
|                    | largest voltage value on the power supply coil    |




### 

| [RX]COIL V MAX NEAR | When the coil distance is the nearest, limit the |
|---------------------|--------------------------------------------------|
|                     | largest voltage value on the power supply coil   |




## 

| [RX]COIL V MIN FAR | When the coil distance is the farthest, limit the |
|--------------------|---------------------------------------------------|
|                    | smallest voltage value on the power supply coil   |



When the coil distance is the nearest, limits the minimum voltage value on the power supply coil



| [RX]COIL Dev Basis | The offset of coil decided by the current during the |
|--------------------|------------------------------------------------------|
|                    | process of transport power. The set value is judge   |
|                    | the up limit of offset of coil, use the critical     |
|                    | size of increased current in current system to be    |
|                    | the up limit                                         |



31

[02] LED1

Function switch of IC port Pin02, LED1 display



[03] LED2

Function switch of IC port Pin03, LED2 display



33

[04] LED3

Function switch of IC port Pin04, LED3 display



[05] BUZZER

Buzzer device function switch of IC port Pin05



35

Function - FOD

Switch of metal foreign body protection function



36

[Current Sensor]

Current detection IC type selection



37

[PID]THRUST CONTROL

Thrust control system launching switch



[FOD] NFC SCAN

NFC detection function switch



## 

| [BOOT] L-C LOCK | Power on testing L-C resonant frequency locking     |
|-----------------|-----------------------------------------------------|
|                 | function, it is the protection function that can be |
|                 | operated only if conform to the ACC set value       |



| [ROM]SAVE NEW SET       | Save the set page                                      |
|-------------------------|--------------------------------------------------------|
| Push <c> Execution↔</c> | After pressing <c> it will start counting, execute</c> |
|                         | the action at 10                                       |
| SR/3002                 | The current internal set version code                  |





| [ROM]LOAD DEFAULT 1 | Read the 1 <sup>st</sup> team of default value parameter |
|---------------------|----------------------------------------------------------|
| #WP300*12           | This set configuration as special for this model         |
|                     | circuit board                                            |



#### 43

| [ROM]LOAD DEFAULT 2 | Read the 2 <sup>nd</sup> team of default value parameter |
|---------------------|----------------------------------------------------------|
| #WP300*24           | This set configuration as special for this model         |
|                     | circuit board                                            |




#### 44

[ROM]LOAD DEFAULT 3 Read the 3<sup>rd</sup> team of default value parameter



| [ROM]LOAD DEFAULT 4 | Read the 4 <sup>th</sup> team of default value parameter |
|---------------------|----------------------------------------------------------|
| #[CUSTON]           | This set configuration is manual model, will close       |
|                     | most of the advance functional                           |

# USB MODE - used for connecting the computer through USB



#### United States Patent

| United States Patent |                                                                                                                           |  |
|----------------------|---------------------------------------------------------------------------------------------------------------------------|--|
| 8,098,043            | Induction type power supply device                                                                                        |  |
| 8,217,621            | Frequency modulation type wireless power supply and charger system                                                        |  |
| 8,412,963            | Power supplying and data transmitting method for induction type power supply system                                       |  |
| 8,417,359            | Power transmission method of high-power wireless induction power supply system                                            |  |
| 8,461,802            | Wireless driver system                                                                                                    |  |
| 8,519,667            | Mobile wireless charger system                                                                                            |  |
| 8,729,852            | Method for identification of a light inductive charger                                                                    |  |
| 8,729,854            | Slot-type induction charger                                                                                               |  |
| 8,754,609            | Wireless charging coil structure in electronic devices                                                                    |  |
| 8,772,979            | Method for power self-regulation in a high-power induction type power source                                              |  |
| 8,810,072            | High-power induction-type power supply system and its data transmission method                                            |  |
| 8,860,365            | Inductive charging method for vehicles                                                                                    |  |
| 8,941,267            | High-power induction-type power supply system and its bi-phase decoding method                                            |  |
| 8,981,600            | Low-loss data transmission method for high-power induction-type power supply system                                       |  |
| 9,045,050            | Inductive charging method for vehicles                                                                                    |  |
| 9,048,881            | Method of time-synchronized data transmission in induction type power supply system                                       |  |
| 9,075,587            | Induction type power supply system with synchronous rectification control for data transmission                           |  |
| 9,413,197            | Inductive power supply system and intruding metal detection method thereof                                                |  |
| 9,600,021            | Operating clock synchronization adjusting method for induction type power supply system                                   |  |
| 9,600,022            | Operating clock synchronization adjusting method for induction type power supply system                                   |  |
| 9,628,147            | Method of automatically adjusting determination voltage and voltage adjusting device thereof                              |  |
| 9,671,444            | Current signal sensing method for supplying-end module of induction type power supply system                              |  |
| 9,831,687            | Supplying-end module for induction-type power supply system and signal analysis circuit therein                           |  |
| 9,960,639            | Supplying-end module of induction type power supply system and voltage measurement method thereof                         |  |
| 10,002,707           | Induction coil structure for wireless charging device                                                                     |  |
| 10,038,338           | Signal modulation method and signal rectification and modulation device                                                   |  |
| 10,056,944           | Data determination method for supplying-end module of induction type power supply system and related supplying-end module |  |
| 10,114,396           | Induction type power supply system and intruding metal detection method thereof                                           |  |
| 10,153,665           | Method for adjusting output power for induction type power supply system and related supplying-end module                 |  |
| 10,289,142           | Induction type power supply system and intruding metal detection method thereof                                           |  |
| 10,312,748           | Signal analysis method and circuit                                                                                        |  |
| 10,574,095           | Decoding method for signal processing circuit and signal processing circuit using the same                                |  |
| 10,587,153           | Intruding metal detection method for induction type power supply system and related supplying-end module                  |  |
| 10,594,168           | Intruding metal detection method for induction type power supply system and related supplying-end module                  |  |
| 10,600,547           | Induction type power supply system and coil module thereof                                                                |  |
| 10,615,645           | Power supply device of induction type power supply system and NFC device identification method of the same                |  |
| 10,630,113           | Power supply device of induction type power supply system and RF magnetic card identification method of the same          |  |
| 10,630,116           | Intruding metal detection method for induction type power supply system and related supplying-end module                  |  |
| 10,643,787           | Induction type power supply system and coil module thereof                                                                |  |
| 10,673,287           | Method and supplying-end module for detecting receiving-end module                                                        |  |
| 10,686,331           | Signal modulation method and signal rectification and modulation device                                                   |  |

Microchip Technology Inc. Europe Global Customer Quality Pascal Lecuyer Sr. Manager +33240181818 Route de Gachet, 44300 Nantes, France Quality.Europe@mirochip.com

Fu Da Tong (FDT) Technology <u>WWW.RFIDPOWER.COM.TW</u> 10F.-5, No.880, Zhongzheng Rd., Zhonghe Dist., New Taipei City 23586, Taiwan (R.O.C.) <u>EVB@rfidpower.com.tw</u>